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Abstract— This paper presents an approach and introduces
new open-source tools which can be used to evaluate robotic
mapping algorithms, in addition to an extensive subterranean
mine rescue dataset based upon the DARPA Subterranean chal-
lenge including professionally surveyed ground truth. Finally,
some commonly available approaches are evaluated using this
metric.

I. INTRODUCTION

Situational awareness in a dynamic and evolving disaster
recovery scenario is a critical component in allocating re-
sources to minimize survivor casualties. In the subterranean
regime, recovery can be hampered by limited access due to
collapse or fire, as well as environmental hazards such as
noxious fumes and the risk of further collapse. Robots can
be employed to locate survivors and build maps which enable
incident commanders to make decisions balancing exposure
to risk with reducing human casualties.

To enable roboticists to speak to these challenges, we
present the SubT-Tunnel dataset and analysis tools intended
for benchmarking simultaneous localization and mapping
(SLAM) algorithms in underground tunnel environments.
This dataset represents a snapshot of the Tunnel Circuit
and SubT Integration eXercise (STIX) events of the DARPA
Subterranean Challenge1, held in the US at the NIOSH and
Edgar Mines in Pennsylvania and Colorado, respectively.
Mines present a starkly different set of environment char-
acteristics than those found in typical SLAM datasets: poor
to no lighting, varied levels of roughness and irregularity in
structure, sometimes significant changes in topography, wet,
dirty, and no access to GPS. By providing a dataset which
exposes these characteristics, we aim to broaden the classes
of environments that SLAM algorithms should be judged
against.

In designing this dataset, we have followed the structure
of other datasets, such as the KITTI Vision Benchmarking
Suite [3], that contain a redundant set of sensory inputs in
order to admit multiple algorithmic techniques. In addition
to the standard stereo camera imagery and multiple LiDAR
sources, we also include thermal camera data as an additional
modality that provides special utility in low-light, under-
ground conditions. This style of benchmark dataset enables
ablation studies, where algorithmic components and sensor
inputs are switched off or degraded to objectively determine
marginal effects on performance.
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Fig. 1. A sample landmark artifact report visualization resulting in
a scored point. The robot, shown in yellow, is positioned within the
NIOSH Experimental mine at the DARPA Subterranean Challenge. The
drill (orange) is visible in the robot’s stereo camera (upper right) as well
as thermal IR camera (upper left). The ground-truth position of the drill in
a global reference frame is shown by the blue sphere, while the detection
report is shown with the green sphere. As the detection is within the scoring
threshold, the reported location is shown in green which indicates a point
is scored. Additionally, RMSE is computed on the artifact reports to allow
for fine-grained comparison and evaluation of mapping accuracy.

Obtaining ground truth information, namely the actual sen-
sor trajectory, for SLAM in extensive environments is chal-
lenging, and many datasets only provide complete ground
truth for a small environment, partial ground truth through
a small portion of a larger traversal, or simply rely on users
doing qualitative analysis on the resulting map. We take
the approach of providing ground truth modeled after the
scoring of the DARPA Subterranean Challenge: during each
collection, we have manually labeled the detection and local-
ization of several competition “artifacts,” and we can evaluate
the SLAM accuracy by composing these locations with the
estimated position of the platform and comparing against
the known artifact locations. The SubT-Tunnel dataset thus
represents a simplified version of the competition.

In terms of mapping analysis, there are two general
methodologies for measuring mapping accuracy, relative and
absolute [8], and we fall squarely on the side of absolute
error for this application. This puts much more stringent
requirements on the mapping system but is motivated by the
observation that many external interactions with the tunnel,
such as drilling from above to ventilate or provide emergency
supplies to survivors, can only be successful with accurate
absolute estimates. In addition, by focusing on a small set
of target locations, we are suggesting a shift to a task-based



benchmarking mindset for SLAM. This not only lowers the
cost of obtaining good ground truth, but also allows the
analysis to apply to a wider range of possible mapping
sources, including multiple agents working with independent
maps but a shared coordinate system.

The contributions of this paper are as follows:
1) We introduce and describe a new, open dataset taken

from the DARPA Subterranean Challenge Tunnel Cir-
cuit competition and STIX events.

2) We propose a new absolute-accuracy analysis metric
for map evaluation modeled after the competition
scoring.

3) We provide a set of open-source support tools to enable
researchers to easily evaluate their own mapping ap-
proaches against this metric, including an approach for
aligning their map coordinate frames with the global
frame without using GPS.

4) As a baseline, we compare multiple SLAM algorithms
from the literature using this metric.

In doing so, we seek to provide a useful resource for
researchers looking to get started in understanding the chal-
lenges of subterranean operations.

II. DATA COLLECTION

The SubT-Tunnel dataset consists of sensor information
from two mine sites. One recording was taken at the “Edgar”
research mine, a former precious metals mine, in Idaho
Springs, Colorado during the DARPA SubT Integration eXer-
cise (STIX), courtesy of the Colorado School of Mines. The
other recordings are from the mine used for the DARPA
Subterranean Challenge Tunnel circuit in Bruceton, Penn-
sylvania, courtesy of the National Institute of Occupational
Safety and Health (NIOSH). The mines used in this dataset
were shut-down over 100 years ago and have since been re-
opened for educational, research, and training purposes by
the aforementioned parties. These locations were chosen by
DARPA to provide representative examples of mine rescue,
while maintaining safety for participants and personnel. Each
mine presents some specific mapping challenges:

• STIX: The Edgar mine has a few improvements to illu-
mination, but is dark along most of its tunnels. Mostly
flat, with some limited portions with steep inclines.
The mine also features a prominent railroad track over
significant portions which makes mobility difficult. The
mine is dry enough that the robot produces significant
atmospheric dust at times which may scatter LiDAR
and obscure visible light cameras.

• Tunnel Circuit: The Bruceton mine is divided into two
separate courses, the Safety Research (SR) and Experi-
mental (EX). Illumination provided by sparse overhead
lighting but does feature some dark areas. Mostly flat
but wet and muddy, with areas of reflection.

Each of the tunnel circuit challenge courses, SR and EX,
are given in two configurations: A, and B (only configuration
B is represented in this dataset). For each of these configura-
tions, twenty artifacts are placed within the courses. As teams

Fig. 2. Robot used to collect data at the “Edgar” mine during the STIX
event.

achieve points by accurately reporting the locations of these
artifacts, accurate ground-truth positions for the artifacts are
necessary for comparison. To achieve the required level of
accurate position information for the artifacts, the ground
truth positions were surveyed by professional surveyors
experienced in mine surveying.

A. Sensors and Robots

For the STIX dataset, the iRobot PackBot was chosen due
to its tracked configuration to improve maneuverability over
the railroad tracks of the Edgar Mine. The robot and its
sensor payload is shown in Figure 2. This robot is equipped
with an Ouster OS1-64 to collect the primary high-density
LiDAR point cloud. A second LiDAR sensor is also included
in the Carnegie Robotics MultiSense SL for redundancy
and comparative purposes. The Multisense SL sensor also
provides stereo vision and high intensity illuminators, which
are necessary to make observations of artifacts in the darker
portions of the environment. The robot is also equipped with
a FLIR Tau2 thermal infrared camera since several of the
artifacts are heated (mock survivors and cell phones) and
are quite apparent on thermal vision. The dataset provides
platform odometry which is generated using wheel odometry
with orientation substituted from a Microstrain 3DM-GX5-
25 IMU. The Received Signal Strength Indicator (RSSI)
to all available wireless 2.4GHz hotspots is also recorded.
This is primarily useful in locating the cell phone artifacts;
secondarily, it is planned for use in subterranean radio
propagation analysis.

For the Tunnel Circuit datasets, a Clearpath Husky was
chosen for its superior ground clearance and rugged offroad
tires. The robot platform, complete with deployed sensor
payload, can be seen in Figure 3. The robot is equipped with
the same sensor payload as above with the following small
modifications. The Ouster OS1-64 LiDAR has been moved to
a location on the robot where its view will not be occluded by
other components. The other primary change is that the FLIR
Tau2 has been replaced with a FLIR Boson camera as the
frame-grabber for the Tau was not reliable when collecting
data at the STIX event, and the Boson camera has a direct
USB interface board.

All data collection was done under direct teleoperation,
with the operator following behind the robot. For the STIX
data, an XBox 360 wireless controller was used which has
limited range; therefore, personnel are occasionally visible in



Fig. 3. Robot used to collect data at the SR and EX courses from the
tunnel circuit competition mine.

the LiDAR view behind the robot. For the tunnel circuit data,
teleoperation control was managed over a WiFi link which
enabled the operators to stay further back and avoid being
seen by the robot. Be aware that the operators are detected
by the LiDAR at times, but if the full scan is used, these
errors are relatively minor.

B. Dataset Collection

The dataset is collected in ROS2 bag format using the
tool rosbag record. Some sensor output is recorded both in
its raw datagram packet form, in addition to some convenient
conversions to more immediately usable forms such as point
clouds. Camera imagery is recorded using image transport
compressed type to greatly reduce file size while maintaining
full frame rate and similar quality. Example ROS launch files
demonstrating how to play back this dataset can be found in
the tunnel ckt launch directory of the included repository3.

Many more trajectories were recorded than appear in
this description. A faulty encoder on the Husky rendered
odometry unusable on Configuration A runs at the tunnel
circuit. These runs were therefore not evaluated here as most
of the techniques we evaluate are configured to rely upon
odometry. One run with poor odometry, ex B route2.bag, was
included in the evaluation to see how well these techniques
could perform with poor odometry. The runs in Configuration
A with poor odometry are expected to be released with this
data set as they could still be useful to evaluate visual SLAM.

III. METRICS FOR COMPARISON

In prior SLAM metric comparison work such as [1], an
incremental relative error was chosen due to the assumption
that an equivalent error made early on in a map should result
in the same “score” as an error made much later in the map.
This relative error metric is useful for many applications;
however, in the subterranean regime, minimizing absolute
error is needed in many cases. For example, in a worst-
case mine collapse rescue, an access tunnel might need to
be drilled from the surface. To hit the desired passageway

2www.ros.org
3https://jgrogers@bitbucket.org/jgrogers/stix ws.git

requires accurate absolute position, within the characteristic
width of the tunnel (in our case, this is around 2.5 meters).
In the case of reporting the location of survivors to first
responders, a report made within 5 meters of the survivor
would likely be close enough for the first responder to find
that survivor.

Since the ground truth survey gives us accurate absolute
positions of the artifacts which are distributed throughout the
challenge courses, they can be used as landmarks to compare
against to establish accuracy for a mapping procedure. The
first metric is the number of artifacts observed within 5
meters of their ground-truth positions, which corresponds to
the score a team would have received had they used their
SLAM algorithm and their robot had driven the same path
through the course. As this is a relatively coarse measure,
the Root Mean Square Error (RMSE) on the distance to
the artifact landmarks is also used to give a fine-grained
comparison. Finally, the minimum error and maximum error
to the artifact landmark position is also given to establish the
stability of the mapping procedure over the length of a run.

To support testing of SLAM systems independent of object
recognition, artifact locations are coded into run files with
the extension ȧrtifacts. These artifact locations are generated
through the subt scoring node with the coding mode parame-
ter set to true. In coding mode, the scoring node generates the
artifact file based upon user input. The location of AprilTags
corresponding to the ground truth frame origin are generated
through the use of the AprilTag library, which is provided as
an entry in the included rosinstall file. As the AprilTags for
the fiducial landmarks are passed, the best measurement as
reported by the tag detection is kept and recorded into the
ȧrtifacts file. The entry in the artifacts file consists of the
fiducial tag, the ROS time when the detection was made,
the image coordinates of the detection (center), the camera
frame ID and 3D coordinates of the tag (using stereo for
depth) and the robot base frame ID and 3D coordinates in the
base frame. When the user sees that the robot is observing
an artifact which should be coded into the file, they first
pause the bag playback, then click the button on the right of
the coding window corresponding to the artifact type. The
user then clicks on the center of the artifact in the image
shown in the window. The same type of entry as described
for fiducial landmarks is made in the artifacts file, except
using the artifact type string.

Since the artifact locations are recorded in a local coordi-
nate system, the scoring node simply looks for a transform
between the “darpa” frame (established by the ground truth
locations of the fiducial landmarks) and the local frame. As
the ”darpa” to ”map” frame is automatically provided by
the scoring node, the user needs only to provide the ”map”
to ”chinook/base” portion of the transform in TF. The user
can include the ”chinook/odom” to ”chinook/base” and opt
to provide only the correction in ”map” to ”chinook/odom”.
Using this transform, the scoring node computes the “darpa”
frame location of the landmark which would have resulted
from making this observation while using the mapping sys-
tem under evaluation. The relationships between these frames



Fig. 4. Top: View from the robot of the entrance portal and the frame alignment fiducials. These AprilTags, along with IR reflectors, prisms, and
spheres, have been surveyed in the “darpa” reference frame. This information is meant to be used by competitors to find the transform to this frame as
their robots enter the challenge. Bottom left: A top-down view of the robot after it has entered the tunnel, but before the distal fiducial tag is used to
improve the alignment of the darpa to map frame. Bottom right: The same view taken moments later after the distal fiducial is used to correct the absolute
frame transform. In both of these images, the large pink spheres represent the fiducial location in the global frame, and the smaller spheres represent the
measurements in the map frame.

are summarized in Figure 5. The scoring node processes the
artifacts file and compares artifact positions to the ground
truth when the ROS time of the report creation is reached. If
the location is within 5 meters of the ground truth position,
a point is accumulated. The RMSE and min/max errors are
also updated to reflect this new measurement.
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Fig. 5. TF frame information; analysis is performed on the transform from
chinook/base to map that an algorithm solves for.

Alignment of the mapping system under test to the global
“darpa” frame is handled automatically by the scoring node.
The procedure is illustrated in Figure 4. The AprilTags were
observed in the coding node, and the most confident match
is recorded along with the position of the tag in the robot’s
base frame. The stereo depth is currently used to find the
distance to the tags. Upon observing a minimum of three
tags, the transform between the darpa and map frames is
estimated using the Umeyama algorithm [10] provided in
the Eigen library.

This dataset could be used to additionally test an object
recognition and localization mechanism; this would require
an extension to the scoring node to substitute artifact reports
processed from the coded artifacts file with a report callback
(which would have to be added to the scoring node). Care
should be taken to limit the number of reports made on
a single artifact; the artifacts were coded only on one
appearance in a given “loop”, i.e. the robot had to travel
a significant distance before revisiting the artifact for it to
be subsequently recoded.

IV. BENCHMARKS

We have selected a set of modern SLAM approaches
which were available in the open source in addition to our
own technique. These approaches were selected to provide
some examples of using this dataset with different sensory
modalities including LiDAR and stereo vision. In addition,
the raw proprioceptive odometric trajectory estimate is eval-
uated by itself to establish how necessary mapping is to
achieving a high score on this challenge.
OmniMapper

The first SLAM algorithm evaluated with this dataset is
an approach from our previous work that was developed
based upon the open-source OmniMapper [9]. This mapping
system is a modular framework for integrating sensory mea-
surements from potentially many modalities. It is configured
for this analysis to utilize platform wheel odometry, gyro
data for orientation only, and LiDAR data from the Ouster
OS-1-64. OmniMapper builds a pose graph along the robot’s
trajectory, with connections between adjacent poses coming
from Iterated Closest Point (ICP) [7] when a match is made



with low residual error, and wheel odometry is substituted
when no match is found. Wheel odometry is used as an
initial guess to bootstrap the ICP iterations, which greatly
accelerates convergence. When the robot revisits a location
previously seen along its trajectory, the ICP procedure is used
to find loop closures, where additional constraints are added
to the graph. This graph of relative frame transformations
is continuously optimized via ISAM2 [5] in the GTSAM
package [2]. The dataset evaluations are performed in real-
time; however, only partially degraded performance is still
achieved at 400% speed.
Cartographer

Cartographer [4] is an open-source mapping suite which
can incorporate 2D and 3D LiDAR, landmark measurements,
odometry, and IMU measurements. In place of ICP, Cartog-
rapher uses a fast correlation-based scan matcher for both
frame-to-frame matching as well as loop closure. These mea-
surements are incorporated into a graphical representation
which is solved by the Ceres solver.

For our analysis, we have included the launch files and
configurations used for Cartographer. It should be noted
that these parameters are not necessarily ideal and platform
calibrations might not be up to the level which is needed for
this software. In some of the runs made with Cartographer,
the robot appears to descend and gets the wrong altitude
early in the run, which limits the scoring accuracy. As this
is likely due to a platform calibration issue or configuration
parameter, we have included an alternative analysis where
the artifact locations and robot detections are projected into
the X-Y plane; effectively eliminating this potential source of
error. These results can be found in the Cartographer 2D
entries in Table I.
ORB SLAM2

ORB SLAM2 [6] is a robot mapping system which con-
sumes camera data instead of LiDAR, either monocular,
stereo, or depth camera (RGBD). This approach leverages
visual odometry to build local keyframe models. Bundle
adjustment is used to triangulate the location of landmarks
across keyframes. When locations are revisited, a bag-of-
words description is used to identify loop closures. This
mechanism is also used to provide a reliable relocalization
mechanism in the event of tracking failure. This approach
has been evaluated against many existing (above ground)
mapping datasets and has been demonstrated to achieve state-
of-the-art accuracy.
Experimental Evaluation. Each of the techniques described
above was evaluated against the dataset where possible.
Qualitative results in the form of point clouds overlaid on
ground truth surveyed point cloud data can be seen in
Figure 6. In this figure, both of the tunnel circuit courses
can be seen. The safety research course is the top section
of the mine, and the experimental course is in the bottom
section of the mine.

Results for each tested algorithm can be seen in Table I. In
this table, a dash indicates that the algorithm was unable to be
run on the dataset. The Cartographer algorithm (in both 3D
and 2D configurations) were not run on the data taken in the

STIX event at the Edgar mine. This is due to a mistake on the
data collection, where the necessary odometry message was
omitted. As this would deprive the Cartographer algorithm
of one of its key inputs, it was decided to omit the results
for this dataset. It should be noted that Cartographer can
indeed function without the odometry input; however, its
accuracy with only IMU and laser scan data was insufficient
to come close to scoring any points. We believe that this
may be due to imprecise calibration of IMU; this algorithm
might be able to achieve significantly better results with
ideal calibration. Overall, the OmniMapper performs slightly
better than Cartographer; however, this may be attributed
to the fact that OmniMapper has been tuned specifically for
this operation and we may not have configured Cartographer
ideally.

ORB SLAM was not configured to run on the STIX
course since the right camera image was omitted. The depth
image is available, so results are anticipated shortly using
the RGB-D configuration. The main issue with ORB SLAM
on this dataset is that, due to the darker conditions in
the mines, feature tracking fails when the robot rotates
at even a moderate rate. The relocalization procedure in
ORB SLAM was often unable to recover, as the robot does
not return to revisit these locations until much later in the
run. We modified the recovery procedure to continue with
the last pose when tracking was lost, which is designated
by ORB SLAM+. As the vehicle was often rotating when
tracking was lost, this procedure enabled the mapping run to
continue but typically introduced significant tracking error.
In some cases, additional progress was made; however, no
additional artifacts were identified with sufficient precision
to count for additional score. Each of the ORB SLAM runs
was terminated when the robot moved past the lit portion of
the mine, where it became totally non-functional, despite the
illumination provided by the onboard illuminators.

The illumination in this dataset is clearly less than what
is typically given to ORB SLAM; however, by observation
the illuminators clearly provide enough light for an ob-
server to determine the platform’s motion. It remains to be
demonstrated if visual SLAM-based techniques can operate
at the precision needed to score well on the Subterranean
Challenge; the authors plan to test other approaches in the
future.

V. CONCLUSION AND FUTURE WORK

We have presented a dataset, metric, and analysis tools
for evaluating mapping algorithms applied to underground
tunnel environments. Thanks to the efforts of the DARPA
Subterranean Challenge support team, surveyed ground-truth
landmark “artifact” positions are provided which extend deep
below the earth in three mines, challenging researchers to
test their own mapping system. We have performed an initial
evaluation on our own mapping system, in addition to two
options available in the open source, as well as an evaluation
of how well the robot’s proprioceptive sensing alone could
be used in place of mapping.
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Fig. 6. Ground truth point clouds of the tunnel environment by professional surveying are shown in black. OmniMapper results are overlaid in blue for
qualitative comparison.

Run Algorithm Score RMSE Min err Max err
File Length [m] [m] [m]

sr B route1.bag 909

OmniMapper 8/8 1.12 0.31 2.22
Cartographer 7/8 3.3 1.2 7.2

Cartographer 2D 8/8 1.5 0.71 2.1
ORB SLAM2+ 1/2* 13.7* 1.2 19.2
ORB SLAM2 1/1* 1.2 1.2 1.2

Odometry 1/8 13.25 4.44 27.7

sr B route2.bag 792

OmniMapper 9/9 1.5 0.46 2.7
Cartographer 9/9 2.3 1.7 3.0

ORB SLAM2+ 1/5* 28.3 2.8 51.6
ORB SLAM2 1/2* 4.8 2.8 6.2

Odometry 0/7 9.6 5.5 15.3

ex B route1.bag 1930

OmniMapper 20/20 2.4 0.95 4.1
Cartographer 1/20 11.9 4.4 18.2

Cartographer 2D 18/20 2.6 0.23 6.7
ORB SLAM2+ 3/6* 15.1 1.7 32.2
ORB SLAM2 3/3* 2.62 1.7 3.5

Odometry 0/20 54.9 5.29 168.1

ex B route2.bag 1187

OmniMapper 9/13 9.1 0.26 22.1
Cartographer 4/13 19.4 2.23 46.2

ORB SLAM2+ 0/0* 0 0 0
Odometry 4/13 23.8 2.2 44.3

stix mainloop.bag 871

OmniMapper 7/19 14.0 0.27 37.2
Cartographer - - - -
ORB SLAM2 - - - -

Odometry 4/19 19.3 0.53 47.8

TABLE I
MAPPING SCORE, RMSE, MINIMUM, AND MAXIMUM ERROR FOR EACH

ALGORITHM ON THE DATASET

Our proposed metric focuses on the absolute accuracy of a
small set of locations rather than the accumulated trajectory
error that is often reported. We argue that this is valid
because it represents a task-based benchmarking mindset:
we are interested in assessing how well mapping enables the
mission functions of the robotic system. More importantly,
this provides a pathway for analyzing systems that look
drastically different than the “single moving sensor package”
that describes essentially every SLAM dataset.

One advantage of a modern graph-based SLAM approach
is that localization along the trajectory can be corrected
through loop closure. Our analysis methodology described
here scores a point each time an observation of an artifact

is made. In the future, one improvement to this technique
would be to incorporate this trajectory correction by using
the final posterior estimate instead of the intermediate one.
The methodology described here is one which can be easily
applied in many situations; future work will focus on en-
abling these type of posterior artifact reports in a universally
applicable way.

Though this initial analysis used hand-coded artifact de-
tections, this dataset has the potential for evaluating object
recognition and localization alongside the current map accu-
racy evaluation if users wanted to run their own perception
algorithms. A mechanism could be implemented in the
scoring node which would accept global frame object reports
and score them directly against the ground truth; replacing
the coded artifact reports. We invite the community to submit
pull requests to the repository that implement support for this
mode of evaluation.

We intend to create similar datasets at each of the future
DARPA Subterranean Challenge circuit events as well as the
final combined event. The future circuit events are planned
to extend beyond mines; the next circuit event is planned to
involve the “Urban Underground”, the infrastructure beneath
the city streets. The final circuit event is planned to take
place in natural caves. As each of these planned future
circuit events has the potential to involve terrain which is
inaccessible to a wheeled platform, we plan to add aerial
assets to supplement future collections.
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